Конспект лекции: Ряды Фурье. Преобразование Фурье



Преобразование Фурье. Фурье-анализ – это семейство математических методов, основанных на разложении сигнала в синусоиды. Разложение Фурье – половина гармонических составляющих косинусоиды, половина синусоиды. Всякая функция может быть представлена бесконечной суммой синусоид, каждая из которых будет со своей амплитудой и начальной фазой (спектр). В зависимости от того, с каким сигналом имеют дело, используют разные преобразования Фурье. Основное достоинство – это то, что каждая из sin и cos – ых составляющих имеет свою частоту, а исходный сигнал своей частоты может и не иметь (например импульс). В линейных системах синусоидальный входной сигнал приводит к появлению синусоидального выходного сигнала той же частоты, но с другой амплитудой и начальной фазой. Разложение Фурье также называют спектральным анализом.

Ряды Фурье. Если сигнал непрерывный и периодический с частотой f, разложение его на гармонические составляющие даст только частоты из ряда 2f, 3f, 4f и т.д. Составляющая с частотой f называется 1-ой гармоникой, 2f – 2-ой и т.д. Первую гармонику ещё называют основным тоном, 2-ю первым обертоном, 3-ю вторым обертоном. Синусоидальный (косинусоидальный) сигнал состоит только из 1-ой гармоники. Искажения формы синусоидального сигнала при прохождении его через системы статически нелинейные приводит к появлению высших гармоник. Если искажения имеют симметричный вид, то появляются только нечётные гармоники (5f, 7f и т.д.). Если искажения несимметричные, то появляются чётные и нечётные гармоники, а также составляющая нулевой частоты – постоянное смещение сигнала.

Синусоидальный сигнал и его первая гармоника:

Сигналы с симметричным и ассиметричным искажениями:

Формулы коэффициентов ряда Фурье:


где n - порядок гармоники.

Искажения формы сигнала можно использовать для умножения частот на целые числа. При этом необходимо предусмотреть фильтрацию ненужных частотных составляющих.



Внимание! Каждый электронный конспект лекций является интеллектуальной собственностью своего автора и опубликован на сайте исключительно в ознакомительных целях.